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To the Student
As you begin this course, I invite you to think about your 
reasons for enrolling in it. Why are you taking general 
chemistry? More generally, why are you pursuing a college 
education? If you are like most college students taking gen-
eral chemistry, part of your answer is probably that this 
course is required for your major and that you are pursuing 
a college education so you can get a good job someday. 
While these are good reasons, I suggest a better one. I think 
the primary reason for your education is to prepare you to 
live a good life. You should understand chemistry—not for 
what it can get you—but for what it can do for you. 
Understanding chemistry, I believe, is an important source 
of happiness and fulfillment. Let me explain.

Understanding chemistry helps you to live life to its full-
est for two basic reasons. The first is intrinsic: Through an 
understanding of chemistry, you gain a powerful appreciation 
for just how rich and extraordinary the world really is. The 
second reason is extrinsic: Understanding chemistry makes 
you a more informed citizen—it allows you to engage with 
many of the issues of our day. In other words, understanding 
chemistry makes you a deeper and richer person and makes 
your country and the world a better place to live. These rea-
sons have been the foundation of education from the very 
beginnings of civilization.

How does chemistry help prepare you for a rich life and 
conscientious citizenship? Let me explain with two examples. 
My first one comes from the very first page of Chapter 1 of 
this book. There, I ask the following question: What is the 
most important idea in all of scientific knowledge? My 
answer to that question is this: The properties of matter are 
determined by the properties of molecules and atoms. That 
simple statement is the reason I love chemistry. We humans 
have been able to study the substances that compose the world 
around us and explain their behavior by reference to particles 
so small that they can hardly be imagined. If you have never 
realized the remarkable sensitivity of the world we can see to 
the world we cannot, you have missed out on a fundamental 
truth about our universe. To have never encountered this truth 
is like never having read a play by Shakespeare or seen a 
sculpture by Michelangelo—or, for that matter, like never 
having discovered that the world is round. It robs you of an 
amazing and unforgettable experience of the world and the 
human ability to understand it.

My second example demonstrates how science literacy 
helps you to be a better citizen. Although I am largely sympa-
thetic to the environmental movement, a lack of science lit-
eracy within some sectors of that movement, and the resulting 
anti-environmental backlash, creates confusion that impedes 
real progress and opens the door to what could be misin-
formed policies. For example, I have heard conservative pun-
dits say that volcanoes emit more carbon dioxide—the most 

significant greenhouse gas—than does petroleum combus-
tion. I have also heard a liberal environmentalist say that we 
have to stop using hairspray because it is causing holes in the 
ozone layer that will lead to global warming. Well, the claim 
about volcanoes emitting more carbon dioxide than petroleum 
combustion can be refuted by the basic tools you will learn to 
use in Chapter 4 of this book. We can easily show that volca-
noes emit only 1/50th as much carbon dioxide as petroleum 
combustion. As for hairspray depleting the ozone layer and 
thereby leading to global warming: The chlorofluorocarbons 
that deplete ozone have been banned from hairspray since 
1978, and ozone depletion has nothing to do with global 
warming anyway. People with special interests or axes to 
grind can conveniently distort the truth before an ill-informed 
public, which is why we all need to be knowledgeable.

So this is why I think you should take this course. Not 
just to satisfy the requirement for your major, and not just to 
get a good job someday, but also to help you to lead a fuller 
life and to make the world a little better for everyone. I wish 
you the best as you embark on the journey to understand the 
world around you at the molecular level. The rewards are well 
worth the effort.

To the Professor
First and foremost, thanks to all of you who adopted this book 
in its first and second editions. You helped to make this book 
successful and I am grateful beyond words. Second, I have 
listened carefully to your feedback on the previous edition. 
The changes you see in this edition are a direct result of your 
input, as well as my own experience in using the book in my 
general chemistry courses. If you have acted as a reviewer or 
have contacted me directly, you are likely to see your sugges-
tions reflected in the changes I have made. The goal of this 
edition remains the same: to present a rigorous and accessi-
ble treatment of general chemistry in the context of relevance.

Teaching general chemistry would be much easier if all of 
our students had exactly the same level of preparation and ability. 
But alas, that is not the case. Even though I teach at a relatively 
selective institution, my courses are populated with students with 
a range of backgrounds and abilities in chemistry. The challenge 
of successful teaching, in my opinion, is therefore figuring out 
how to instruct and challenge the best students while not losing 
those with lesser backgrounds and abilities. My strategy has 
always been to set the bar relatively high, while at the same time 
providing the motivation and support necessary to reach the high 
bar. That is exactly the philosophy of this book. We do not have 
to compromise away rigor in order to make chemistry accessible 
to our students. In this book, I have worked hard to combine rigor 
with accessibility—to create a book that does not dilute the con-
tent, yet can be used and understood by any student willing to put 
in the necessary effort.

Preface
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Principles of Chemistry: A Molecular Approach is first a 
student-oriented book. My main goal is to motivate students 
and get them to achieve at the highest possible level. As we all 
know, many students take general chemistry because it is a 
requirement; they do not see the connection between chemis-
try and their lives or their intended careers. Principles of 
Chemistry: A Molecular Approach strives to make those con-
nections consistently and effectively. Unlike other books, 
which often teach chemistry as something that happens only 
in the laboratory or in industry, this book teaches chemistry in 
the context of relevance. It shows students why chemistry is 
important to them, to their future careers, and to their world.

Second, Principles of Chemistry: A Molecular Approach 
is a pedagogically-driven book. In seeking to develop prob-
lem-solving skills, a consistent approach (Sort, Strategize, 
Solve, and Check) is applied, usually in a two- or three-column 
format. In the two-column format, the left column shows the 
student how to analyze the problem and devise a solution 
strategy. It also lists the steps of the solution, explaining the 
rationale for each one, while the right column shows the imple-
mentation of each step. In the three-column format, the left 
column outlines a general procedure for solving an important 
category of problems that is then applied to two side-by-side 
examples. This strategy allows students to see both the general 
pattern and the slightly different ways in which the procedure 
may be applied in differing contexts. The aim is to help stu-
dents understand both the concept of the problem (through the 
formulation of an explicit conceptual plan for each problem) 
and the solution to the problem.

Third, Principles of Chemistry: A Molecular Approach is a 
visual book. Wherever possible, images are used to deepen the 
student’s insight into chemistry. In developing chemical prin-
ciples, multipart images help to show the connection between 
everyday processes visible to the unaided eye and what atoms 
and molecules are actually doing. Many of these images have 
three parts: macroscopic, molecular, and symbolic. This combi-
nation helps students to see the relationships between the for-
mulas they write down on paper (symbolic), the world they see 
around them (macroscopic), and the atoms and molecules that 
compose that world (molecular). In addition, most figures are 
designed to teach rather than just to illustrate. They are rich with 
annotations and labels intended to help the student grasp the 
most important processes and the principles that underlie them. 
The resulting images contain significant amounts of informa-
tion but are also uncommonly clear and quickly understood.

Fourth, Principles of Chemistry: A Molecular Approach is 
a “big picture” book. At the beginning of each chapter, a short 
introduction helps students to see the key relationships between 
the different topics they are learning. Through focused and 
concise narrative, I strive to make the basic ideas of every 
chapter clear to the student. Interim summaries are provided at 
selected spots in the narrative, making it easier to grasp (and 
review) the main points of important discussions. And to make 
sure that students never lose sight of the forest for the trees, 
each chapter includes several Conceptual Connections, which 
ask them to think about concepts and solve problems without 
doing any math. I want students to learn the concepts, not just 
plug numbers into equations to churn out the right answer.

Principles of Chemistry: A Molecular Approach is, lastly, a 
book that delivers the core of the standard chemistry curriculum, 
without sacrificing depth of coverage. Through our research, we 
have determined the topics that most faculty do not teach and we 
have eliminated them. When writing a brief book, the temptation 
is great to cut out the sections that show the excitement and rel-
evance of chemistry; we have not done that here.  Instead, we 
have cut out pet topics that are often included in books simply to 
satisfy a small minority of the market. We have also eliminated 
extraneous material that does not seem central to the discussion. 
The result is a lean book that covers core topics in depth, while 
still demonstrating the relevance and excitement of these topics.

I hope that this book supports you in your vocation of 
teaching students chemistry. I am increasingly convinced of 
the importance of our task. Please feel free to email me with 
any questions or comments about the book.

Nivaldo J. Tro
tro@westmont.edu

What’s New in This Edition?
The third edition has been extensively revised and contains 
many more small changes than I can detail here. Below is a 
list of the most significant changes from the previous edition.

•	 More	robust	media	components	have	been	added,	including	
80 Interactive Worked Examples, 39 Key Concept Videos, 
14 additional Pause & Predict videos, 33 PHET simula-
tions, and 5 new Mastering simulations with tutorials.

•	 Each	 chapter	 now	 has	 a	 10–15	 question	multiple-choice	
end-of-chapter Self-Assessment Quiz. Since many colleg-
es and universities use multiple-choice exams, and because 
standardized final exams are often multiple choice, stu-
dents can use these quizzes to both assess their knowledge 
of the material in the chapter and to prepare for exams. 
These quizzes are also available on mobile devices.

•	 Approximately	 100	 new	 end-of-chapter	 group	 work	
 questions have been added to encourage small group work 
in or out of the classroom.

•	 Approximately	45	new	end-of-chapter	problems	have	been	
added.

•	 New	conceptual	 connections	 have	 been	 added	 and	many	
from the previous edition have been modified. In addition, 
to support active, in class, learning, these questions are 
now available in Learning Catalytics.

•	 All	 data	have	been	updated	 to	 the	most	 recent	 available.	
See for example:

Section 1.7 The Reliability of a Measurement in which 
the data in the table of carbon monoxide concentra-
tions in Los Angeles County (Long Beach) have been 
updated.

Figure 4.2 Carbon Dioxide Concentrations in the Atmo-
sphere is updated to include information through 2013.

Figure 4.3 Global Temperature is updated to include in-
formation through 2013.

Figure 4.19 U.S. Energy Consumption is updated to in-
clude the most recent available information.
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•	 Many	figures	and	tables	have	been	revised	for	clarity.	See,	
for example:

Figure 3.6 Metals Whose Charge Is Invariant in 
Section 3.5. This replaces Table 3.2 Metals Whose 
Charge Is Invariant from One Compound to Another.

The weather map in Section 5.2 has been replaced, and 
the caption for the weather map has been simplified 
and linked more directly to the text discussion.

Figure 7.3 Components of White Light has been re-
placed with a corrected image of light passing through 
a prism.

Figure 7.4 The Color of an Object and Figure 7.17 The 
Quantum-Mechanical Strike Zone both have updated 
photos.

The orbital diagram figure in Section 7.5 Quantum 
Mechanics and the Atom that details the various princi-
pal levels and sublevels has been replaced with an up-
dated version that is more student-friendly and easier 
to navigate.

Figure 8.2 Shielding and Penetration is modified so 
that there is a clear distinction between parts a and b.

Figure 10.15 Molecular Orbital Energy Diagrams for 
Second-Row Homonuclear Diatomic Molecules now 
has magnetic properties and valence electron configu-
ration information.

Figure 12.10 Solubility and Temperature. Data for 
Na2SO4 have been deleted from the graph, and data 
Ce2(SO4)3 have been added to the graph.

Figure 13.11 Thermal Energy Distribution is modified. 
It is now noted in the caption that Ea is a constant and 
does not depend on temperature; new notations have 
also been added to the figure.

Table 15.5 Acid Ionization Constants for Some Mono-
protic Weak Acids at 25 °C has been modified to in-
clude pKa values.

The unnumbered photo of a fuel cell car in Section 
18.1 Pulling the Plug on the Power Grid has been re-
placed with an updated image of a newer fuel cell car.

•	 In	Section	10.5	and	throughout	Chapter	11,	the	use	of	elec-
trostatic potential maps has been expanded. See, for ex-
ample, Figures 11.6, 11.7, 11.9, and 11.10.

•	 In	Section	 10.8	Molecular Orbital Theory: Electron De-
localization in the subsection on Linear Combination of 
Atomic Orbitals (LCAO), a discussion of molecular orbital 
electron configuration has been added.

•	 New	 chapter-opening	 art,	 briefer	 introductory	 material,	
and a new first section (11.1 Water, No Gravity) replace 
Section 11.1.

•	 In	Section	13.4	The Integrated Rate Law: The Dependence 
of Concentration on Time, the derivation to integrate the 
differential rate law to obtain the first-order integrated rate 
law is now shown in a margin note.

•	 The	format	for	all	the	ICE	tables	is	new	in	Chapters	14,	15,	
and 16; the format has been modified to make them easier 
to read.

•	 A	new	section	entitled	The Titration of a Polyprotic Acid 
has been added to Section 16.4 Titrations and Curves. 
Content includes new Figure 16.8 Titration Curve: Di-
protic Acid with Strong Base.

•	 Some	new	in-chapter	examples	have	been	added,	 includ-
ing Example 4.14 Writing Equations for Acid–Base Re-
actions Involving a Weak Acid and Example 9.9 Drawing 
Resonance Structures and Assigning Formal Charge for 
Organic Compounds.
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Chemistry through Relevancy
Chemistry is relevant to every process occurring around us at every second. Niva 
Tro helps students understand this connection by weaving specific, vivid examples 
throughout the text and media that tell the story of chemistry. Every chapter begins 
with a brief story showing how chemistry is relevant to all people, at every moment.

Visualizing Chemistry
Student-friendly, multipart images include 
macroscopic, molecular, and symbolic 
perspectives with the goal of connecting 
you to what you see and experience 
(macroscopic) with the molecules 
responsible for that world (molecular) 
and with the way chemists represent 
those molecules (symbolic).  Illustrations 
include extensive labels and annotations 
to highlight key elements and to help 
differentiate the most critical information 
(white box) to secondary information 
(beige box).

11 Liquids, Solids, and Intermolecular 
Forces

In the absence of 
gravity (such as in a 
space station), a 
sample of water sticks 
together to form a 
perfect sphere. This 
behavior is a direct 
result of intermolecular 
forces—attractive 
forces that exist 
among the particles 
that compose matter.

429

WE LEARNED IN CHAPTER 1 THAT 

matter exists primarily in three 

states: solid, liquid, and gas. In Chapter 5, 

we examined the gas state. In this chapter 

we turn to the solid and liquid states, 

known collectively as the condensed states 

(or condensed phases). The solid and liquid 

states are more similar to each other than 

they are to the gas state. In the gas state, 

the constituent particles—atoms or 

molecules—are separated by large 

distances and do not interact with each 

other very much. In the condensed states, 

the constituent particles are close together 

and exert moderate to strong attractive 

forces on one another. Whether a 

substance is a solid, liquid, or gas at room 

temperature depends on the magnitude of 

the attractive forces among the constituent 

particles. In this chapter, we will see how 

the properties of a particular atom or 

molecule determine the magnitude of those 

attractive forces.

11.1 Water, No Gravity
In the space station there are no spills. When an astronaut squeezes a full water bottle, the 
water squirts out like it does on Earth, but instead of falling to the floor and forming a 
puddle, the water sticks together to form a floating, oscillating, blob of water. Over time, 
the blob stops oscillating and forms a nearly perfect sphere. Why?

It’s a wild dance floor there at the molecular level.

—Roald Hoffmann (1937–)

11.1 Water, No Gravity  429

11.2 Solids, Liquids, and Gases: A 
Molecular Comparison  430

11.3 Intermolecular Forces: The 
Forces That Hold Condensed 
States Together  432

11.4 Intermolecular Forces in 
Action: Surface Tension, 
Viscosity, and Capillary 
Action  440

11.5 Vaporization and Vapor 
Pressure  442

11.6 Sublimation and Fusion  451

11.7 Heating Curve for Water  453

11.8 Phase Diagrams  454

11.9 Water: An Extraordinary 
Substance  456
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and Basic Structures  457

11.11 Crystalline Solids: The 
Fundamental Types  463

11.12 Crystalline Solids: Band 
Theory  467
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NaCl(s)

Electron
transfer

Electrons are transferred from sodium to chlorine, forming sodium chloride.
Sodium is oxidized and chlorine is reduced.

Oxidation–Reduction Reaction without Oxygen

Cl2

2 Na(s) 2 NaCl(s)Cl2(g)+

Cl2(g)

+

2 Na(s)

Cl–
Na+

Na+

▲ FIGURE 4.17 Oxidation–Reduction without Oxygen When sodium reacts with chlorine, electrons 
are transferred from the sodium to the chlorine, resulting in the formation of sodium chloride. In this 
redox reaction, sodium is oxidized and chlorine is reduced.The reaction between sodium and oxygen

forms other oxides as well.
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Interactive Problem-Solving 
Strategy
A unique yet consistent step-by-step format encourages logical thinking 
throughout the problem-solving process rather than simply memorizing 
formulas.

NEW! 80 Interactive Worked Examples make Tro’s 
unique problem-solving strategies interactive, bringing 
his award-winning teaching directly to all students using 
his text. In these digital, mobile versions, students are 
instructed how to break down problems using Tro’s proven 
Sort, Strategize, Solve, and Check technique.

Icons appear next to 
examples indicating a digital 
version is available in the 
etext and on mobile devices 
via a QR code located here, 
and on the back cover of your 
textbook.

EXAMPLE 4.1 Stoichiometry
During photosynthesis, plants convert carbon dioxide and water into glucose (C6H12O6) according to the reaction:

6 CO2(g) + 6 H2O(l) ˚˚˚  ̊ "sunlight  6 O2(g) + C6H12O6(aq)

Suppose a particular plant consumes 37.8 g CO2 in one week. Assuming that there is more than enough water present to 
react with all of the CO2, what mass of glucose (in grams) can the plant synthesize from the CO2?

SORT The problem gives the mass 
of carbon dioxide and asks you to 
�nd the mass of glucose that can 
be produced.

GIVEN 37.8 g CO2

FIND g C6H12O6

STRATEGIZE The conceptual plan fol-
lows the general pattern of mass 
A S amount A (in moles) S
amount B (in moles) S mass B. 
From the chemical equation, you 
can deduce the relationship 
between moles of carbon dioxide 
and moles of glucose. Use the 
molar masses to convert between 
grams and moles.

CONCEPTUAL PLAN 

g CO2 mol CO2 mol C6H12O6 g C6H12O6

1 mol C6H12O6

6 mol CO2

1 mol CO2

44.01 g CO2

180.16 g C6H12O6

1 mol C6H12O6

RELATIONSHIPS USED 
molar mass CO2 = 44.01 g>mol
6 mol CO2  :  1 mol C6H12O6

molar mass C6H12O6 = 180.16 g>mol

SOLVE Follow the conceptual plan 
to solve the problem. Begin with g 
CO2 and use the conversion factors 
to arrive at g C6H12O6.

SOLUTION

37.8 g CO2 *
1 mol CO2

44.01 g CO2
*

1 mol C6H12O6

6 mol CO2
*

180.16 g C6H12O6

1 mol C6H12O6
= 25.8 g C6H12O6

CHECK The units of the answer are correct. The magnitude of the answer (25.8 g) is less than the initial mass of 
CO2 (37.8 g). This is reasonable because each carbon in CO2 has two oxygen atoms associated with it, while in C6H12O6 
each carbon has only one oxygen atom associated with it and two hydrogen atoms, which are much lighter than oxygen. 
Therefore the mass of glucose produced should be less than the mass of carbon dioxide for this reaction.

FOR PRACTICE 4.1
Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the 
reaction:

Mg(OH)2(aq) + 2 HCl(aq) S 2 H2O(l) + MgCl2(aq)

What mass of HCl, in grams, is neutralized by a dose of milk of magnesia containing 3.26 g Mg (OH)2?
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A Focus on Conceptual 
Understanding
Key Concept Videos
NEW! 39 Key Concept Videos combine artwork from the textbook 
with both 2D and 3D animations to create a dynamic on-screen viewing 
and learning experience. These short videos include narration and brief 
live-action clips of author Niva Tro explaining the key concepts of each 
chapter.

KEY CONCEPT VIDEO
VSEPR Theory: The Effect 
of Lone Pairs
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Conceptual Connections
Conceptual Connections are strategically placed to reinforce 
conceptual understanding of the most complex concepts. 

Enhanced  
End-of-Chapter 
Material
NEW! Self Assessment 
Quizzes contain 
10–15 multiple-choice 
questions, authored in 
the ACS-exam and MCAT 
style to help students 
optimize the use of 
quizzing to improve their 
understanding and class 
performance.

The Self Assessment 
Quizzes are also 
assignable in 
MasteringChemistry and 
contain wrong-answer 
feedback as well as links 
to the eText.

CONCEPTUAL 
CONNECTION 5.5 PRESSURE AND NUMBER OF MOLES

Nitrogen and hydrogen react to form ammonia according to the equation:

N2(g) + 3 H2(g) L  2 NH3(g)

Consider the representations shown here of the initial mixture of 
reactants and the resulting mixture after the reaction has been 
allowed to react for some time.

If the volume is kept constant, and nothing is added to the 
reaction mixture, what happens to the total pressure during the 
course of the reaction?

(a) The pressure increases.

(b) The pressure decreases.

(c) The pressure does not change.

CONCEPTUAL 
CONNECTION 17.7 K AND �G rxn

The reaction A(g) L B(g)  has an equilibrium constant that is less than one. What 
can you conclude about ∆G°rxn for the reaction?

(a) ∆G°rxn = 0 (b) ∆G°rxn 6 0 (c) ∆G°rxn 7 0

Self-Assessment QUIZ
 Q1. A chemist mixes sodium with water and witnesses a violent 

reaction between the metal and water. This is best classified as:
 a. an observation b. a law
 c. a hypothesis  d. a theory

 Q2. This image represents a particulate view of a sample of mat-
ter. Classify the sample according to its composition.

 a. The sample is a pure element.
 b. The sample is a homogeneous mixture.
 c. The sample is a compound.
 d. The sample is a heterogeneous mixture.

 Q3. Which change is a physical change?
 a. wood burning b. iron rusting
 c. dynamite exploding d. gasoline evaporating

 Q4. Which property of rubbing alcohol is a chemical property?
 a. its density (0.786 g>cm3)
 b. its �ammability
 c. its boiling point (82.5 °C)
 d. its melting point (-89 °C)

 Q5. Convert 85.0 °F to K.
 a. 181.1 K b. 358 K c. 29.4 K d. 302.6 K

 Q6. Express the quantity 33.2 * 10-4 m in mm.
 a. 33.2 mm b. 3.32 mm
 c. 0.332 mm d. 3.32 * 10-6 mm

 Q7. Determine the mass of a 1.75 L sample of a liquid that has a 
density of 0.921 g>mL.

 a. 1.61 * 103 g b. 1.61 * 10-3 g
 c. 1.90 * 103 g d. 1.90 * 10-3 g

 Q8. Perform the calculation to the correct number of signi�cant 
figures.

43.998 * 0.00552>2.002
 a. 0.121 b. 0.12 c. 0.12131 d. 0.1213

 Q9. Perform the calculation to the correct number of signi�cant 
figures.

  (8.01 - 7.50)>3.002
 a. 0.1698867 b. 0.17 c. 0.170 d. 0.1700

 Q10. Convert 1285 cm2 to m2.
 a. 1.285 * 107 m2

 b. 12.85 m2

 c. 0.1285 m2

 d. 1.285 * 105 m2

 Q11. The first diagram shown here depicts a compound in its liq-
uid state. Which of the diagrams that follow best depicts the 
compound after it has evaporated into a gas?

a. b.

c. d.

 Q12. Three samples, each of a different substance, are weighed 
and their volume is measured. The results are tabulated here. 
List the substances in order of decreasing density.

Mass Volume

Substance I 10.0 g 10.0 mL

Substance II 10.0 kg 12.0 L

Substance III 12.0 mg 10.0 mL

 a. III 7 II 7 I  b. I 7 II 7 III
 c. III 7 I 7 II  d. II 7 I 7 III

 Q13. A solid metal sphere has a radius of 3.53 cm and a mass of 
1.796 kg. What is the density of the metal in g>cm3? (The 

volume of a sphere is V =
4

3
pr3.)

 a. 34.4 g>cm3 b. 0.103 g>cm3

 c. 121 g>cm3 d. 9.75 g>cm3

 Q14. A European automobile’s gas mileage is 22 km>L. Convert 
this quantity to miles per gallon.

 a. 9.4 mi>gal b. 1.3 * 102 mi>gal
 c. 52 mi>gal d. 3.6 mi>gal

 Q15. A wooden block has a volume of 18.5 in3. What is its volume 
in cm3?

 a. 303 cm3 b. 47.0 cm3

 c. 1.13 cm3 d. 7.28 cm3

Answers: 1:a; 2:c; 3:d; 4:b; 5:d; 6:b; 7:a; 8:a; 9:b; 10:c; 11:a; 12:c; 13:d; 14:c; 15:a 
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Active and Adaptive
Personalize Learning with MasteringChemistry®
MasteringChemistry® from Pearson is the leading online homework, tutorial, and assessment system, 
designed to improve results by engaging students before, during, and after class with powerful content. 
Instructors ensure students arrive ready to learn by assigning educationally effective content before class, 
and encourage critical thinking and retention with in-class resources such as Learning Catalytics™. Students 
can further master concepts after class through traditional and adaptive homework assignments that 
provide hints and answer-specific feedback. The Mastering gradebook records scores for all automatically 
graded assignments in one place, while diagnostic tools give instructors access to rich data to assess 
student understanding and misconceptions. 

Mastering brings learning full circle by continuously adapting to each student and making learning more 
personal than ever—before, during, and after class.

BEFORE CLASS
Dynamic Study Modules
Dynamic Study Modules are designed to enable 
students to study effectively on their own by 
helping them quickly access the information 
they need to be more successful on quizzes 
and exams. Utilizing a dynamic process of 
test–learn–retest, these modules adjust to the 
needs of each individual student and enable 
mastery of the material. They can be accessed 
on smartphones, tablets, or computers, and 
the results can be tracked in the Mastering 
Gradebook.

DURING CLASS
Learning CatalyticsTM

Learning Catalytics is a bring your own device student 
engagement, assessment, and classroom intelligence 
system.  With Learning Catalytics, instructors can:

•  Assess students in real time, using open-ended tasks to 
probe student understanding.

•  Understand immediately where students are and adjust 
your lecture accordingly. 

•  Improve your students’ critical-thinking skills.
•  Access rich analytics to understand student 

performance.
•  Add your own questions to make Learning Catalytics fit your course exactly.
•  Manage student interactions with intelligent grouping and timing.

Learning Catalytics is a technology that has grown out of twenty years of cutting edge research, innovation, 
and implementation of interactive teaching and peer instruction.
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AFTER CLASS
Tutorials
Tutorials, which feature specific 
wrong-answer feedback, 
hints, and a wide variety of 
educationally effective content, 
guide your students through the 
toughest topics in chemistry. The 
hallmark Hints and Feedback 
offer instruction similar to what 
students would experience in an 
office hour visit, allowing them to 
learn from their mistakes without 
being given the answer.

Adaptive Follow-up Assignments in MasteringChemistry®
Instructors are given the ability to assign adaptive follow-up assignments to students for Principles 
of Chemistry.  Adaptive follow-ups are personalized assignments that pair Mastering's powerful 
content with Knewton's adaptive learning engine to provide personalized help to students before 
misconceptions take hold. These assignments address topics students struggled with on assigned 
homework, including core prerequisite topics.
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for Instructors www.masteringchemistry.com

The Mastering platform was developed by scientists for science students and 
instructors. Mastering has been refined from data-driven insights derived from over a 
decade of real-world use by faculty and students.

Gradebook
Every assignment is automatically graded. 
Shades of red highlight struggling students 
and challenging assignments.

Gradebook Diagnostics
This screen provides you with your favorite 
diagnostics. With a single click, charts 
summarize the most difficult problems, 
vulnerable students, grade distribution, and 
even score improvement over the course.

Learning Outcomes
Let Mastering do the work in tracking 
student performance against your learning 
outcomes:

•  Add your own or use the publisher provided 
learning outcomes.

•  View class performance against the 
specified learning outcomes.

•  Export results to a spreadsheet that you 
can further customize and share with your 
chair, dean, administrator, or accreditation 
board.

A01_TRO7282_03_SE_FM.indd   26 04/18/15   8:00 AM

www.masteringchemistry.com


Resource
Available  
in Print

Available 
Online

Instructor 
or Student 
Resource Description

Instructor Resource 
Center

✓  Instructor This resource contains the following:
•  All illustrations, tables, and photos 

from the text in JPEG format
•  Three pre-built PowerPoint 

Presentations (lecture, worked 
examples, and images)

•  TestGen computerized software with 
the TestGen version of the Testbank

•  Word files of the Test Item File

Instructor Resource 
Manual

✓ Instructor Organized by chapter, this useful 
guide prepared by Sandra Chimon-
Peszek (Calumet College of St. Joseph), 
includes objectives, lecture outlines, 
references to figures and solved 
problems, as well as teaching tips.

Test Bank ✓ Instructor The Test Bank, prepared by Anil 
Bangeree (Columbus State University), 
contains more than 2,200 multiple 
choice, true/false, and short-answer 
questions.

Solutions Manual ✓ Instructor Prepared by Kathy Shaginaw, this 
manual contains step-by-step solutions 
to all end-of-chapter exercises.  With 
instructor permission, this manual may 
be made available to students.

Instructor and Student 
Resources
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1 Matter, Measurement, and 
Problem Solving

Hemoglobin, the 
oxygen-carrying protein 
in blood (depicted 
schematically here), 
can bind carbon 
monoxide molecules 
(the linked red and 
black spheres) as well 
as oxygen.
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29

WHAT DO YOU THINK Is THe mOsT 

important idea in all of human 

knowledge? There are, of course, many 

possible answers to this question—some 

practical, some philosophical, and some 

scientific. If we limit ourselves only to 

scientific answers, mine would be this: The 

properties of matter are determined by the 

properties of molecules and atoms. Atoms 

and molecules determine how matter 

behaves—if they were different, matter 

would be different. The properties of water 

molecules, for example, determine how 

water behaves; the properties of sugar 

molecules determine how sugar behaves; 

and the molecules that compose our bodies 

determine how our bodies behave. The 

understanding of matter at the molecular level gives us unprecedented 

control over that matter. For example, our understanding of the details of 

the molecules that compose living organisms has revolutionized biology 

over the last 50 years.

The most incomprehensible thing about the universe is that it is 

comprehensible.

—Albert Einstein (1879–1955)

1.1 Atoms and Molecules 29

1.2 The Scientific Approach to 
Knowledge 31
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Matter 33
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Change 38
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Measurement 45

1.8 Solving Chemical 
Problems 51

Key Learning Objectives  60

1.1 Atoms and Molecules
The air over most U.S. cities, including my own, contains at least some pollution. A 
 significant component of that pollution is carbon monoxide, a colorless gas emitted in the 
exhaust of cars and trucks. Carbon monoxide gas is composed of carbon monoxide 
 molecules, each of which contains a carbon atom and an oxygen atom held together by a 
chemical bond. Atoms are the submicroscopic particles that constitute the fundamental 
building blocks of ordinary matter. However, free atoms are rare in nature; instead, they 
bind together in specific geometric arrangements to form molecules.
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30   Chapter 1   Matter, Measurement, and Problem Solving

The properties of the substances around us depend on the atoms and molecules that 
compose them, so the properties of carbon monoxide gas depend on the properties of 
carbon monoxide molecules. Carbon monoxide molecules happen to be just the right size 
and shape, and happen to have just the right chemical properties, to fit neatly into cavities 
within hemoglobin—the oxygen-carrying molecule in blood—that normally carry oxy-
gen molecules (Figure 1.1▲ ). Consequently, carbon monoxide diminishes the oxygen-
carrying capacity of blood. Breathing air containing too much carbon monoxide (greater 
than 0.04% by volume) can lead to unconsciousness and even death because not enough 
oxygen reaches the brain. Carbon monoxide deaths have occurred, for example, as a 
result of running an automobile in a closed garage or using a propane burner in an 
enclosed space for too long. In smaller amounts, carbon monoxide causes the heart and 
lungs to work harder and can result in headache, dizziness, weakness, and confusion.

Cars and trucks emit a closely related molecule, called carbon dioxide, in far greater 
quantities than carbon monoxide. The only difference between carbon dioxide and carbon 
monoxide is that carbon dioxide molecules contain two oxygen atoms instead of just one. 
This extra oxygen atom dramatically affects the properties of the gas. We breathe much 
more carbon dioxide—which composes 0.04% of air and is a product of our own respira-
tion as well—than carbon monoxide, yet it does not kill us. Why? Because the presence of 
the second oxygen atom prevents carbon dioxide from binding to the oxygen-carrying site 
in hemoglobin, making it far less toxic. Although high levels of carbon dioxide (greater 
than 10% of air) can be toxic for other reasons, lower levels can enter the bloodstream with 
no adverse effects. Such is the molecular world. Any differences between molecules—such 
as the presence of the extra oxygen atom in carbon dioxide compared to carbon monoxide—
results in differences between the substances that the molecules compose. 

As another example, consider two other closely related molecules, water and 
 hydrogen peroxide:

In the study of chemistry, atoms are often 
portrayed as colored spheres, with each 
color representing a different kind of atom. 
For example, a black sphere represents a 
carbon atom, a red sphere represents an 
oxygen atom, and a white sphere represents 
a hydrogen atom. For a complete color code 
of atoms, see Appendix IIA.

Oxygen
atom

Carbon
atom

Carbon monoxide molecule

Oxygen
atom

Oxygen
atom

Carbon
atom

Carbon dioxide molecule

Hemoglobin, the oxygen-carrying
molecule in red blood cells

Carbon monoxide can bind
to the site on hemoglobin
that normally carries oxygen.

▲ Figure 1.1 Binding of Oxygen and Carbon Monoxide to Hemoglobin Hemoglobin, a large protein 
molecule, is the oxygen carrier in red blood cells. Each subunit of the hemoglobin molecule contains 
an iron atom to which oxygen binds. Carbon monoxide molecules can take the place of oxygen, thus 
reducing the amount of oxygen reaching the body’s tissues.

Hydrogen
atoms

Oxygen
atom

Water molecule Hydrogen peroxide molecule

Hydrogen
atoms

Oxygen
atoms

KEY CONCEPT VIDEO
Atoms and Molecules
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